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Abstract

A framework is presented for visualizing and detecting climate variability and change based on time-dependent
probability density functions (PDFs). The PDFs show how the distribution of values in the sample window changes
over time and show more detail than do timeseries of windowed moments. A set of information-theoretic statistics
based on the Shannon entropy and the Kullback-Leibler divergence (KLD) are defined to assess PDF complexity
and temporal variability. The KLD-based measures quantify the representativeness of a 30-year sampling window
of a larger climatic record: how well a long sample can predict a smaller sample’s PDF, and how well one 30-year
sample matches a similar sample shifted in time. These information-theoretic statistics constitute a new type of
climate variability, informatic variability. These techniques are applied to the Central England Temperature record,
the longest continuous meteorological observational record.
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1. Introduction

Climate is a statistical construct computed from meteorological state data sampled over a predefined period. By
convention, this window sampling period W is 30 years—a number arrived at by a vote at the 1937 International
Meteorological Organization meeting [1, 2]. Climate models do not model the climate directly; they compute solutions
to equations of evolution for the Earth system’s instantaneous state and write daily or monthly summaries of the state
to history files, which are then postprocessed to compute climatologies. The I/O-intensive nature of coupled climate
models is arguably the most significant barrier to creating an exascale climate model. A natural question arises: Can
we model the climate directly? Hasselmann [3] proposed a statistical dynamical model (SDM) approach that used
the Fokker-Planck equation (FPE) as the equation of evolution for the probability density function (PDF). For some
quantity X and time ¢ with time-dependent PDF p(X, f), the univariate FPE is

dp(X, 1) + Ox[D1(X, Np(X, )] = dx[D2(X, )dxp(X, D)]. ey

In (1), Di(X, 1) is the drift term, and D, (X, ) is the diffusion term. In Hasselmann’s narrative, weather systems—
atmospheric variations of duration on the order of 15 days or less—provided stochastic forcing to more slowly re-
sponding, integrative components of the Earth system (oceans, cryosphere, and biosphere), much in the way that
molecular motions drive Brownian motion of larger particles suspended in a fluid. Direct deterministic modeling of
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a time-dependent climate PDF using something like (1) is a potent idea because the PDF provides a comprehensive
description of a sample’s underlying population statistics. Direct dynamic modeling of p(X, t) would, in theory, en-
able deterministic modeling of moments and estimates for quantiles and extrema. SDMs, however, fell out of favor a
decade after Hasselman’s 1976 paper because the role of atmospheric momentum transport was not adequately cov-
ered by SDMs and advances in computer hardware made practicable the general circulation model-based approach
employed in current coupled climate and Earth system models.

An alternative to the SDM approach is to ask a slightly different question: What does the empirical climatic PDF
p(X, 1) look like for the observational timeseries of some meteorological variable X, and is it possible to fit an equation
of evolution similar to the FPE for p(X, )? Here I tackle the first part of this question by posing—and proposing
answers to—the following questions regarding a windowed sample of W years taken from a longer record of Y years:

Q1 What does the W-window-sampled p(z, X) look like, how confident can we be of its structure, and how does it
evolve in time?

Q2 What is the information content of a sample of W years? How does it evolve in time over the record of Y years,
and what does this signify?

Q3 How well does a sample of W years predict the whole available data record of ¥ > W years or other major
climatically relevant subsets of the whole record?

Q4 How well does knowledge of the whole record’s time-independent PDF p(X) predict a local W-window-sample-
generated PDF p(¢, X)? That is, when viewed with prior knowledge of the parent density function, how unusual
does p(t, X) look?

Q5 How well does one W-window sample’s PDF ¢(#, X) predict another W-window sample’s PDF p(#', X)?

Q6 Is it possible to use time-dependent PDFs to classify periods of time that are climatically stable or undergoing
climatic change?

I will address Q1 by using a density estimation technique that employs a Bayesian-derived optimal binning scheme.
This binning scheme provides estimated PDFs in a form that is highly compatible with computing key information-
theoretic statistics. These information-theoretic statistics provide the means to address Q2—Q6 and constitute a new
type of climatic variability—informatic variability. In particular, this approach expresses differences in PDFs from
different climatic sampling periods—and, by association, climate change—as a form of information loss, specifically,
loss of ability of a past (changed) climate record’s PDF to predict a changed (past) climate record’s PDF. Application
of these techniques to a classic meteorological timeseries—the Central England Temperature (CET) record [4])—
provide striking visualizations of the evolution of the climate over this record, reveals previously known properties,
and puts in stark contrast the current climate’s oddity with respect to the previous observational record.

2. Probability Density Functions, Information Theory, and Climate

For a random continuous variable X € (—oo,00) the probability density function p(X) satisfies the following
conditions: p(x) > 0,Yx € (—o0, 00), and f_ o:o p(x)dx = 1. Suppose x depends on the time ¢. The dependency x — x()
implies potential time dependence in the PDF; that is, p(x) — p(x, ). Note that each “time slice” of p(x, r) satisfies
the normalization condition of a univariate PDF; that is, for r = 1¢, f_ 0:0 P(x, Dli=.dx = 1. If the underlying statistics of
X remain stationary, then the PDF remains solely a function of x. Nonstationarity—temporal sensitivity of the PDF—
raises the question of how to estimate p(x,#). A common technique used by the climate community is to sample x(7)
using a time window of width W and centered at a time f¢, resulting in a sample S = x(¢),t € [tc — %,tc + %),
and estimating a univariate p(x)|,—,. to get p(x, tc). Advancing this window through time then provides p(x, f). This
windowed sampling technique underlies PDF estimation in this paper. The windowed sampling and binning technique
described in Section 3, combined with visualization, answer Q1.

Information theory [5, 6] is a mathematical framework for quantifying information content and identifying rela-
tionships between random variables. It has been used extensively in the telecommunications and signal-processing
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communities; but it also has been applied by the climate community to solve problems of predictability [7] and model-
reality comparison [8, 9] and to evaluate climate sampling window sizes [10]. Its conceptual roots lie in Boltzmann’s
statistical mechanical formulation of thermodynamic entropy. The Shannon entropy (SE) H(X) is

HX) = - f p(x)log p(x)dx. )

The logarithm base in (2)—and in (3) below—defines the units for information; for bases 2 and e, H(X) is measured
in bits and nats, respectively. H(X) broadly quantifies the amount of “surprise” in the distribution of values of X.
Given a precomputed PDF, computing the SE provides an answer to information content component of Q2. Note that
the integral formulation of the SE (2) can yield negative or infinite values; the reason is that the probability density
function p(x) may locally exceed unity.

Consider two distinct PDFs for X: p(x) and g(x). The additional information, or gain, required to predict p(x)
given g(x) is the Kullback-Leibler divergence (KLD):

plx )] 3)

q(x)

For a time-dependent variable x(7), similar arguments to those presented for PDFs can be applied to compute time-
window-sampled SE and KLD values from (2) and (3), respectively.

The KLD quantifies differences between PDFs. Sometimes it is called a “distance measure” or “metric” for PDFs,
but such terms are inaccurate: The KLD is not symmetric; in general, Dk, (p || ¢) # Dkr(q || p). Furthermore,
the KLLD does not satisfy the triangle inequality. The nonsymmetric nature of the KLD is of particular use. The
representativeness of a particular W-window’s PDF of a larger record can be addressed by constructing g(x, ¢) for each
W-window of a climate record, using the entire Y-year record to construct a density p(x), and computing D (p || q).
In fact, Dk (p || g¢) provides an answer to Q3. Reversing the arguments, an answer to Q4 is Dk, (g || p). QS may be
answered by constructing p(x, f) from two different W-windows and computing the KLD. That is, one can construct
two samples Sy = x(1),7 € [t; = ¥, 1, + %) and S, = x(1),1 € [, — 5,1, + %), and compute from them p(x, #;) and
p(x, 1), respectively. The time-shifted KLD Dk (p(x,t1) || p(x, 1)) quantifies how much additional information is
required to predict the PDF at ¢ = #, from the PDF at ¢ = #;. Large-scale application of the time-shifted KLD to all
possible W-sampling windows in a record of Y years can provide clues about periods of relative climatic stability and
rapid climate change, providing answers to Q6.

The aforementioned SE and KLD statistics characterize the system’s informatic variability.

Both the SE and KLD were originally formulated for discrete variables; one replaces the PDFs {p(x), g(x)} with
the probability mass functions (PMF) {7, Z € RN}, respectively, and integrals w.r.t. x in (2) and (3) with summations
over N discrete states [6]. All PDFs plotted and computed SE and KLD quantities presented in this paper derived
from PMFs estimated from sample data. Numerical computation of the SE is sensitive to the discretization dx — Ax.
Thus, one must take care in discretizing or binning continuous data to form a PMF or PDF, respectively.

Dii(p Il ) = f plx )[

3. Computational Methodology

PDF estimation from observational data is nontrivial and remains an active area of research; an excellent overview
is given in [11]. T used an optimal binning scheme derived from Bayesian principles [12]. The technique’s underlying
assumptions are threefold: a discrete uniform prior distribution for the number of bins within a feasible range, a
Dirichlet prior distribution for the bin probabilities, and a piecewise constant PDF with uniform bins. Other prior
knowledge I comprises the data sample’s size N, range V, and implied bin boundary locations assuming uniform
widths. The posterior probability P(M| \d, I that a PDF with M bins describes the data sample dis [12]

M\N T TIL, T + §)
r(HM TN +4)

PO, D o (57 , 4)
where I'(+) is the gamma function and n; is the number of counts in each bin. The value of M that maximizes P(M| Id_), I)
yields the most probable piecewise constant, uniform-bin-width PDF for d. Maximizing the logarithm of the right-
hand side (RHS) of (4) is computationally easier and also maximizes P(M |57, I). The optimally estimated PDF is
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parameterized as

)
o= (e e A5 4 (-

where y; and 0'1‘2 are the bin probability densities and associated variances, respectively [12]. Even when data is absent
from a bin, y; # 0, and the y; are normalized by construction. The density and its associated uncertainties are defined
by (5) and (6), respectively, thus answering Q1. Densities computed in this manner are used to evaluate all SE- and
KLD-based statistics presented in this paper.

Another desirable characteristic of this PDF estimation scheme is that it can detect severely truncated data [13].
Truncated data will clump at its truncated values, adding fine structure to a PDF’s broad shape, spawning a series of
local maxima in the RHS of (4), growing with M (cf. Figure 5D in [12]). This presents a problem when applied to
the CET data. The CET data are truncated to the nearest 0.1°C, and early application of this technique encountered
the problem of successive maxima in the RHS of (4). Truncation effects can be removed by adding a random uniform
deviate that brackets the rounded value by half the truncation value; this will not replace lost information [13] but
does allow estimation of the PDF’s large-scale structure. I have smoothed the CET data by adding to each observation
a uniform random deviate 9; € [-0.05, 0.05); this smoothing allows PDF estimation using (4) and, when truncated to
the nearest 0.1°C, yields the original timeseries. Multiple random smoothings of the CET have been performed, and
SE and KLD results computed from the different smoothings agree [10].

4. Central England Temperature Record

The CET is the longest observational record for surface air temperature and one of the most thoroughly stud-
ied [14]. Manley’s original CET [15, 4] comprises monthly averages beginning in 1659. The daily CET [16] (Figure
1(a)) spans the period 1772—present for average temperatures (7y,) and 1878—present for minimum (7 'yi,) and max-
imum (7Ta) temperatures. Sampling periods were 1659-2009 for monthly Ty, 1772-2006 for daily Tae, and
1878-2006 for (Tmin,Tmax)- All data were obtained from the British Atmospheric Data Centre [17]. CET daily and
monthly temperature values are rounded to the nearest 0.1°C, with the exception of the monthly record, which has
periods of low (0.5°C—1.0°C) precision for the periods 1659-1699 and 1707-1721.

The CET has a secular warming trend (Figure 1(a)) [14], which emerges after 1900. The 18th and 19th centuries
are periods of relative climate stability in that there are oscillations but no overall trend in the CET [14]. The CET
exhibits oscillatory behavior at multiple periods up to and beyond the century scale [18]. Figure 1(b) (1(c) ) shows
the daily CET average temperature PDF pg;i(Tave) (Ppreind(Tavg)) for the full record 1772-2006 (preindustrial era
1772-1870). These PDFs were obtained by using the technique outlined in Section 3.

Central England Temperature Record
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Figure 1: CET: (a) daily Ty, timeseries (1772-2006), (b) full record pgun(Tavg) (1772-2006), and (c) preindustrial record ppreind(Tavg) (1772—-1870)
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5. CET Probability Density Functions and Informatic Variability

The time-dependent PDF p(t, Tyy,) for CET monthly averages (Figure 2(a)) was computed by using (5). The PDF
is bimodal, with the lower (upper) mode steady during the 17th century at about 5°C (15°C). The upper mode is
broadened and flattened around the year 1800 and reappears shortly afterward, trending gently upward through the
late 20th century. The lower mode is boadened and flattened around the year 1820, reappearing shortly afterward. This
mode shifts toward warmer temperatures during the 19th and 20th centuries more dramatically than does the upper
mode, and the shift steepens after 1950. The early years of the sample 1659—1721 show a more detailed multimodal
structure. The reason is that the optimal binning scheme chose more bins for 30-year windows during this period, a
consequence of the algorithm’s ability to detect truncated data

Uncertainties in p(z, Tayg) (Figure 2(b)) were computed from (6) and show higher values throughout the tempera-
ture spectrum for the period 1659-1720, casting doubt on their associated PDF values in Figure 2(a). The ratio of the
values in Figure 2(a) to those in Figure 2(b) defines a signal-to-noise (S/N) ratio (Figure 2(c)) that quantifies confi-
dence in p(¢, Tayg). Note that little confidence (S/N < 10) is associated with any values of p(¢, Tayg) for t € [1659, 1721],
except for the higher-precision period 1699—-1706. The values of p(t, Tyy,) in the vicinity of its modes after the year
1721 are significant (S/N > 10).

CET Monthly Averages (1659-2009) CET Monthly Averages (1659-2009) CET Monthly Averages (1659-2009)
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Figure 2: CET monthly Tayg: (a) p(t, Tavg), (b) uncertainties in p(Z, Tavg), and (c) signal-to-noise ratio for p(z, Tayg).

PDFs for the daily CET are presented in Figure 3. The PDF p(¢, Tayg) (Figure 3(a)) is bimodal, with the upper
(lower) mode centered near 7°C (14°C). The lower mode is less pronounced before 1830. The warming period 1910—
1950 is present with a narrowing and upward shift of the lower mode, which stabilizes for the period 1950-1975
before again shifting upward and broadening. This alternating strengthening (weakening) of the upper mode while
the lower mode is weak (strong) is a pattern that is seen during the period 1790-1950 and has a wavelike character. If
this pattern is considered a wave, its period T may be estimated by measuring the time interval between peaks in the
upper mode, or the width of the “island” in the lower mode; both approaches yield a period of 7 = 125 years. The S/N
ratios for p(t, Tayg) (Figure 3(d)) show significant values broadly in the band —1°C < Ty, < 21°C, with the central
area around the modes highly significant (S/N> 20). Within this region, PDF isopleths shift upward dramatically
after 1980. The PDF p(¢, Tiin) (Figure 3(b)) shows a single mode. This mode is broad around 1930, with width
ATmin = 7°C and center Ty, = 5.5°C. After 1930, the mode narrows dramatically to AT, ~ 4°C, with a slight
warming up until 1950.The mode stabilizes and broadens near 1960, with width AT, ~ 7.5°C, and its center shifts
upward to T, =~ 6.0°C. During the period 1960—1980, the mode broadens further to AT, ~ 8.5°C, and its center
remains stationary. After 1980, the mode narrows, with its lower boundary PDF isopleth moving upward much more
dramatically—a shift of nearly 2.0°C—than its upper counterpart. The mode’s center shifts upward to 8°C. This
narrowing and rebroadening of the mode may be considered a wave structure in p(#, Thyin); if viewed that way, it has
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CET Daily Averages (1772-2006) CET Daily Minima (1878-2006) CET Daily Maxima (1878-2006)
Time-dependent Probability Density Time-dependent Probability Density Time-dependent Probability Density
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Figure 3: Daily CET PDFs: (a) p(f, Tavg) 1772-2006, (b) p(t, Tmin) 1878-2006, and (c) p(f, Trmax) 1878-2006. Signal-to-noise ratio in time-
dependent PDFs for (d) Tavg, (€) Tmin, and (f) Tmax.

a period 7 ~ 70 years, based on measurement between the centers of the broad portions of the mode. S/N values
in Figure 3(e) for p(t, Trin) show significance for Ty, € [—5, 15], high significance for Ty, € [-2, 13], abd highest
significance values clustered about Ty, € [0, 11], covering the PDF’s shifting mode. Within this high S/N zone, PDF
isopleths in Figure 3(b) show weak variation superimposed on a slow warming trend of approximatly 1.0°C for the
period 1878-2006. The PDF p(t, Tax) (Figure 3(c)) is bimodal, though neither mode is present for the full record.
The upper mode has width and center (ATY ax = 3°C, TY hax = 17.5°C) and is most evident during the period 1910—
1980. Its weakness before 1910 appears to be due to broadening of the midrange of Ty,.x. The disappearence of this
mode after 1980 is caused by midrange broadening and fattening of the high-Ty,,x tail. The lower mode has width
and center (AT .x = 4°C, TEpax = 10.5°C). It is most pronounced during the periods 1893-1937 and 1973-2006.
It disappears briefly around 1955, just when the upper mode is at its strongest. Taken together, these modes suggest
an oscillation in p(#, Tyax) With a period of 7 = 80 or 7 ~ 70 years if estimated from the peaks in the lower mode or
width of the upper mode, respectively. All these results are significant for 1°C < Ty, < 24°C and highly significant
for 4°C < Thax < 21°C (Figure 3(f)).

The oscillatory nature of the PDFs is striking and may be related to previously known oscillations found in the
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monthly CET by Benner [18]. Benner estimated power spectra for the CET using four techniques: the fast Fourier
transformation (FFT), the Lomb-Scargle periodogram (LSP), singular spectrum analysis (SSA), and the global wavelet
spectrum (GWS). He found many different oscillation periods in the CET’s spectrum, and three of these techniques—
FFT, LSP, and GWS—identified periods near those in the CET daily p(%, Tavg), o(f, Timin), and p(f, Tiyax). The 125-year
oscillation that appears in p(¢, Tayg) may be related to the long-period oscillation in the monthly CET T,,, timeseries
that has Tppr = 113, 7rgp = 112.97, and 7gws = 108.53 years. The 70-80-year oscillation that appears in p(, Tyin)
and p(t, Tryax) may be related to the interdecadal oscillation in the monthly CET T, timeseries that has Tgrr = 67.8,
TLsp = 67.78, and Tgws = 69.77 years, possibly the Atlantic Multidecadal Oscillation (AMO) [19].

CET Daily Tavg (1772-2006) CET Daily T, (1878-2006) CET Daily T__, (1878-2006)
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Figure 4: Thirty-year windowed Shannon entropy H for CET daily (a) Tayg (1772-2006), (b) Tryin (1878-2006), and (c) Tmax (1878-2006).

SE timeseries H(#) were computed from the p(z, T) by using (2). Uncertainty quantification was performed by
computing H using Monte Carlo—generated ensembles of 10,000 “neighboring” PDFs defined by (5) and (6) (Figure
4). The box-whisker symbols are defined with whiskers corresponding to the 1st and 99th percentiles, box edges
to the 25th and 75th percentiles, and box center to the median. The dramatic up/down jumps in H with respect to
time are thus unlikely to be numerical artifacts. The timeseries of H(Tys) (Figure 4(a)) shows a pronounced peak
at its maximum value shortly before 1820, when the lower mode was weak to nonexistent; this broadening would
dramatically lower local values of the PDF and thus create larger logarithmic terms in (2). The periods with low
(high) values of H(T.y¢) frequently correspond to times when both the upper and lower modes in p(t, Ty, ) are present
(absent or weak), but this correspondence is not complete. The SE H(T,,x) (Figure 4(c)) are equally hard to interpret.
Each jump or dip in H(T,y) indicates some structural change in p(t, Thax), but identifying the responsible feature(s)
is difficult. The simplest of the SE plots to interpret is that of H(Ty,,) (Figure 4(b)) because p(t, Trin) is practically
unimodal. The broad high value during 1895—-1905 appears to be due to splitting of the mode. Narrow local maxima
H(Tpmin) are present at other times when the mode is split, namely, shortly before 1920 and 1930 and in the early
1980s. A wide, almost uninterrupted trough in H(Tnin) for 1930-1950 appears to be caused by the sharpening of the
mode. By contrast, an even lower trough during 1965-1982 coexists with the mode being at its widest. Although the
SE is clearly a sensitive integrated measure, its integrative nature obscures which features change its value. Thus, Q2
is answered, but the answer’s utility is unclear.

Figures 5 (a,c,e) collectively answer Q3 for the CET monthly T, and daily (Tayvg,Tmin» Tmax)- Figure 5(a) shows
the KL gain from any 30-year sample window’s PDF, to predict PDFs derived from the full sample (1659-2009; solid
line) and the preindustrial era (1659-1869; dotted line). From previous discussion, the high KLD values for 1659—
1750 are suspect because of truncation effects during the period 1659-1721. KLD values for the period 1750-1890
are relatively low, with some oscillatory behavior. After 1890 there are dramatic jumps in the KLD to the whole-
record PDF and even more dramatic increases in the KLD to the preindustrial PDF. Some drop occurs during the
stabilization period 1950-1975, followed by even more dramatic increases after 1975. Late in the 20th century the
KL gain to the preindustrial PDF is higher than for any other part of the CET record, signifying strong structural
change in the PDF since the preindustrial era. The KL gains from the late 20th century PDFs p(t, Ty, ) are also high.
Overall, the KL gain identifies much of the 20th century’s time-evolving climate PDFs as distinctly weaker in their
ability to predict the long-scale record, and thus structurally fundamentally different. The daily Ty, (Figure 5(c))
shows a similar degradation in skill through increasing KLD values during the 20th century. The representativeness
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Figure 5: CET Kullback-Leibler divergences. Divergences from 30-year sampling windows to larger records for (a) monthly CET Ty, (b) daily
CET Tayg, and (c) daily CET Tiin and Tax. Divergences from larger record to 30-year sampling windows for (d) CET monthly T4y, (¢) CET
Daily Tayg, and (f) CET daily Tin and Tnax.

of the CET extreme values of their whole record 1878-2006 (Figure 5(e)) show marked contrast between Ty, and
Tmax- The KL gain from p(#, Tax) is highly cyclic, with strong peaks at 1895, 1918, 1955, and 1990, which suggest a
connection to the oscillation present in p(t, Tmax). The 1990 peak is the highest, confirming that p(1990, Ty,.x) is the
most distantly related PDF to the complete record’s PDF, again suggesting that recent Ty, climatology is distinctly
different from the century that preceded it. The KL gain from p(t, Thin) to the complete record’s p(Tmi,) has high
peaks around 1895 and 1995, with weaker variability imposed on a trough spanning 1905-1980. Again, this suggests
any 30-year period centered on one of the years 1905-1980 is much more representative than the peaks at either end
of the record. For the period 1980-1995 the KL gain required to predict p(Tin) from p(t, Thyin) is nearly as high as the
highest value seen in 1895 and suggests that recent T, climatology is relatively alien compared with the full record.

Figures 5 (b,d,f) collectively answer Q4 for the CET monthly Ty, and daily (Tavg -7 mins Tmax), that is, the amount
of additional information needed to predict p(t, T'), given the full record’s PDF p(T'). The monthly Ty, show KL gain
to any 30-year sample-generated p(t, T,y,) from the full and preindustrial PDFs to be large for the early, deprecated part
of the record and the period after 1975. A long trough covers 1740-1975, with some weaker variability superimposed
on it (Figure 5(b)). This is true for the full-sample and preindustrial PDFs. Significantly, the strongest significant
values for these KL gains lie in the period after 1975, again demonstrating that recent climatology is odder than any
other 30-year period. For the daily T,y the KL gain to p(t, Tayg) from the full-record and preindustrial PDFs (Figure
5(d)) identifies the period after 1980 as being the most distantly related to the full and preindustrial records. The
gains necessary to predict recent sample PDFs from the full and preindustrial records are dramatically greater than
those seen for the 1910-1950 warming period. It is no surprise that the information gain required to predict p(z, Taye)
from the preindustrial sample rises steadily from 1870 forward, a consequence of the p- and g- sampling windows
becoming disjoint after 1900 and then being separated by increasing time lags up to the present. The respite from
this rising trend is associated with the 1950-1975 cooling/stabilization period. The information gain from the PDF of
the full daily CET extrema record 1878-2006 to any 30-year windowed PDF (Figure 5(f)) is structurally similar to
Figure 5(e) but with slightly lower peaks. The reason is that the g-window used to generate the full PDF contains the
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reference PDF’s p-window as a subset. Note again that the full record’s PDF has the most trouble predicting PDFs
generated from windows centered on years after 1985, identifying the climatology of daily CET extreme temperatures
as distinctly odd with respect to the full observational record.

CET Daily Averages (1772-2006) CET Daily Minima (1878-2006) CET Daily Maxima (1878-2006)
Time-shifted Kullback-Leibler Divergence Time-shifted Kullback-Leibler Divergence
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Figure 6: Time-shifted Kullback-Leibler divergences for the daily CET: (a) Tayg (1772-2006), (b) Tiin (1878-2006), and (c) Tmax (1878-2006).

The answer to QS can be found by computing time-shifted KLLD values that compare each 30-year window to every
other 30-year window present in the observational record. Analysis of these results will provide clues to whether we
can answer Q6 as well. Time-shifted KLD values for the daily CET are shown in Figure 6. These plots have as
ordinate (abcissa) the center year #, (f,) of a 30-year sampling window used to generate the PDF p(t,, T) (o(t,, T)).
The value plotted at the point (#;,?,) is Dxr(p || q); this value is zero on the line #, = 1, because Dg;(p || p) = 0.
For a fixed value of 1, points vertically above (below) the point (#,,,) signify the ability of this windowed PDF to
predict future (past) climate PDFs. The CET daily Ty, time-shifted KLD results (Figure 6(a)) reveal a block-diagonal
structure comprising multiple low-KLD-value regions; these correspond to periods of relative climate PDF stability
in that any 30-year window from this range can, with relatively high accuracy, predict another 30-year windowed
PDF in this range. Stable time ranges identified are 1800-1850, 1830-1910, 1910-1950, and 1950-1975. Note that
some of these intervals touch or overlap; overlapping intervals signify a gentler transition in terms of PDF structure,
while intervals that merely touch indicate a more abrupt change in PDF structure. These results are consistent with
Figure 3(a). Off-diagonal blocks of low KLD values indicate periodicity expressed as similarities from windowed
PDFs from one period versus another. In particular, the intervals 1950-1970 and 1830-1870 generate similar PDFs.
Note further that only a modest diagonal band is found after 1980, indicating relatively rapid change in p(f, Tyay,)
during this period. Also note that the highest time-shifted KLD values are in vertical (horizontal) bands defined by
ty > 1980 (¢, > 1980), indicating that climate PDFs centered after 1980 are distinctly different from pre-20th century
climate. Time-shifted KL.D values for the CET daily 7', record (Figure 6(b)) show a narrow block-diagonal structure,
indicating a series of overlapping short periods of relative PDF stability. Strong contrasts between the warming period
of the early 20th century and mid-century cooling/stabilization period that follow it are evident in relatively strong
KLD values. The sampling period after 1980 again appears distinctly different from most other time periods. The
time-shifted KLD values for Ty,.x (Figure 6(c)) show a diagonal band whose width varies from 5 to 15 years, with
some block-diagonal structures associated with the periods 1910-1930, 1940-1960, and 1960-1975. These periods
are times of relatively slow change in p(f, Tmax) Off-diagonal low-KLD-value blocks indicate periodicity with the
intervals 1930-1950 and 1960-1980 appearing related. Off-diagonal high-KLD blocks indicate a strong divergence
between the statistics associated with the sampling periods centered on the intervals 1910-1925 and 1945-1960. Note
the strong divergence between PDFs associated with sampling windows centered on years after 1980 and the rest of
the record, again signaling a fundamental shift in the structure of p(t, Tax)-
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6. Conclusions and Future Work

An exploratory data analysis/information theoretic framework to analyze climate variability has been developed
and applied to the Central England Temperature record. Viewing the 30-year windowed PDFs has provided, at a
glance, deep insight into the evolution of CET monthly and daily average and daily extreme temperatures. The
time-dependent PDFs are consistent with and add new detail to the CET’s known warming trend. These PDFs also
exhibit oscillatory behavior that may be connected to known interdecadal and century-scale oscillations present in
the CET monthly average timeseries. The KLD-based measures of representativeness and oddness put the climate of
the past 30 years in stark contrast with respect to the full and preindustrial observational records. The climatology
of CET average, maximum, and minimum temperatures is distinctly different from that of previous observed times.
Time-shifted KLD metrics have identified previously known periods of relative climatic stability. The metrics cast the
climate of recent decades as distinctly different and changing rapidly with respect to the past century’s climate.

The results reported here are preliminary. Near-term areas of future investigation include using other density
estimation techniques to verify these results, applying spectral techniques to the time-dependent PDFs to search more
thoroughly for periodicity, developing automatic feature detection schemes to identify periods of climatic stability
and change, and applying these techniques to larger observational and model-generated data sets. The long-term goal
of this work is to determine whether equations of evolution for time-dependent climate PDFs—something akin to
(1)—may be reliably estimated from timeseries data and whether such empirical models have any predictive power.
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